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We review methods in the study of nucleotide correlation in DNA sequence, and demonstrate two basic
properties of the correlation through statistical analysis, namely, the short-range dominance of nucleotide
correlation in most DNA sequences and the coarse-grained evolutionary dependence of the short-range corre-
lation in coding sequences. A corresponding evolutionary mechanism is suggested. By the use of spectral
analysis a large inhomogeneity in long-range base correlations for different sequences is indicated. Some
results on three-dimensional DNA walks are reported. The linguistic differences between coding and noncod-
ing sequences are also indicatf81063-651X98)01107-4

PACS numbegps): 87.10+e¢, 02.50--r, 05.40:+j, 87.15~v

I. INTRODUCTION ized the symbolic sequence by decomposing it into binary
sequences and quantified the base correlation, and then a
The nucleotide sequence data stored in GenBank haw&pectral analysis has been dqi2-135.
exceeded hundreds of millions of bases and they increase by (4) The method of subsequence or inhomogeneity analy-
ten times each five years. A great deal of information, suctsis[15—19: This emphasizes the inhomogeneity of the three
as the origin of life, the evolution of species, the develop-positions in a codon and provides an approach to finding the
ment of individuals, and the expression and regulation ofeading frame in DNA sequence.
genes, exist in these sequences. On the other hand, the nucle-(5) Preferential mode analysj20—-24: This method ex-
otide sequences are generally close to random sequences. lonines the preferred modes and poor modes in DNA se-
example, the information parameter analysis shows that thguences of a variety of species. The preferred modes may be
first-order informational redundancies of most coding setelated to specific codes of nucleotide sequences. The
quences are lower than 0.0%]. Where is the information method is of great importance in the linguistic analysis of
stored then? A key point is the base correlation existing irhereditary information.
the DNA sequences. In fact, base correlation is the basis for (6) A method of evolutionary or dynamical model
the grammatical construction of genetic language. [25,26: The nucleotide correlations are investigated under
Thus, investigation into nucleotide correlation is of spe-an assumed evolutionary model or other dynamical model,
cial importance. In recent years many authors have discussa&thich can account for both random mutation and natural
the correlation properties of nucleotides in DNA sequencesselection in the formation of DNA sequences.
To our knowledge, there are at least six methods that have The problems that have been extensively discussed in the
been proposed to study the correlation property of nuclephysical literature as follows are: What is the fundamental
otides in DNA sequences: characteristic of the nucleotide correlation? Is there any uni-
(1) The method of informational parametdis—4]: The  fied picture on fractal-like organization about the long-range
authors defined Markovian entropy with lag or mutual infor- correlation? How do we estimate the correlation length of a
mation to describe the nucleotide correlation between adjasequence in the presence of fluctuations? What important
cent or nonadjacent sites in the sequence. differences in base correlation are there between coding and
(2) DNA walk and fractal analysif5—11]: The sequence noncoding sequences? Does the correlation show any evolu-
has been mapped onto a one-dimensional \Wa/& or more  tionary dependence and what is the mechanism responsible
completely, onto a two or three-dimension@D or 3D)  for its evolution? It seems there is no generally accepted
walk [5,6] and a corresponding fractal analysis is given.  conclusion on each of the above questions. In this article we
(3) Correlation spectrum method: Some authors characteshall discuss some aspects of these problems. The organiza-
tion of the article is as follows. In Sec. Il we shall report the
short-range dominance of base correlation in coding and
* Author to whom correspondence should be addressed. Electronimany noncoding sequences and analyze the linguistic impli-
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versity, Hohhot 010021, China. trum exponent from sequence to sequence. So, in contrast to
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TABLE I. The statistical distribution oD\, (k=1,2,...) in coding sequences.
Pri Rod Mam vrt Inv Pin Bct Vrl Phg Org
Correlation 9.0 7.3 7.0 9.8 6.9 4.0 3.2 5.5 2.2 24
strength
Main max. at 89.5 93.8 92.7 81.5 63.3 74.4 66.0 84.8 40.9 47.6
k=1,2(%)
Short tail (%) 23.3 33.2 28.2 24.1 14.9 24.2 355 50.9 45.1 42.8
short-range correlations, it seems that there is no unified pic- "
ture on the long-range component of nucleotide correlation. HY= —g Pa% Pbja 1092 Ppja
In Sec. Il we shall indicate, in a coarse-graining sense the 2

evolutionary dependence of the short-range correlation on
coding sequences and propose a formulation, maximum in-
formation principle, to describe the mechanism of sequence
evolution. Since many works on DNA sequences in the lit-
erature are based on the DNA walk, n Sec. IV we Sha”wherepab is the joint probability of base pa#b occurring
generalize a 1D quk to a 3D walk, Wh'Ch IS th? MOSL COM-jpy e sequence, anpl, ;= Pap/Pa is the conditional prob-
plete one, considering four bases equivalently in base spacgb“ity‘

and report some results on base correlation with this ap- To describe the nonadjacent correlation we generdlize
proach. In the last section we shall summarize the statisticch)

peculiarities of genetic language that should be considere
seriously in the attempt to establish a reasonable model of
genetic language.

D2=H—HM=2H+§) Pab 108, Pab,

Dk+2:2H+;3 Pacb 10G2 Pagp, k=1,2,3,..., (3

Il. SHORT-RANGE DOMINANCE

OF BASE CORRELATION wherep, i, means the joint probability of baseoccurring

) ) . after basea at a distancek along the sequenc®,,Ds,...
~ The nucleic acid sequence as a genetic language can BRscribe the divergence from independence of the sequence
InveStIgated by an information-theoretic method. We Intro-(the grammatica| construction of genetic |ang@a@ds eas-

duce informational entropit and its related redundan€;,  jly shown thatD,_ ; is the mutual information (k) exactly
which describes the divergence from equiprobability of four[4] since

basegqthe vocabulary composition of genetic language

Pik-1)j

|(k)=i§]: Pik-1)j 109,
: j

—22, p; log, p;
H=—§ Pa 0G; Pa, i T H R
(1)

+Z Pik-1)j 1092 Pi(k—1); -

Di=Hpa—H=2—H,
where p, is the probability of base occurring in the se-
guence, and the summation runs over all four bases, ade
(A), cytosine C), guanine G), and thymine T). Hax iS
the maximum value oH, which is taken when the four
bases occur equiprobably in the sequence.

We introduce Markovian entropiAM (averaged condi-

]

For a random sequence with infinite length,=D,
nirre- - -=0. However, for a real sequence with finite length, the
fluctuation makes them nonvanishing. To draw out the mean-
ing of Dy calculated from the nucleotide sequence, one
should subtract the effect of stochastic fluctuation. The latter
can be seen as the error bars fyr. Through expansion of

tional entropy and its related second-order information re-logarithm in D, and by use of Pearson’s theorem one can

dundancyD,, which describes théneighboring base corre-
lation in the DNA sequence.

TABLE Il. The statistical distribution

prove that, for a random sequence of leniyth(2N In 2)D,
obeys a x? distribution with 3 degrees of freedom,

oD, (k=1,2,...) in complete sequences.

Pri Rod Mam Vrt Inv Pin Bct vrl Phg Org
Correlation 18.9 19.8 14.8 15.8 8.7 4.5 7.2 11.8 6.2 5.9
strength
Main max. at 95.5 96.4 96.3 88.6 59.2 81.7 86.9 87.7 85.9 94.0
k=1,2(%)
Short tail (%) 7.5 14.2 11.2 16.2 1.6 215 6.1 14.7 11.0 22.0




PRE 58 STATISTICAL CORRELATION OF NUCLEOTIDES INA.. .. 863

0.060 7 0.7
0.050 , . 0.6
0.040 , 0.5
ool ' 04
_t 0.030 g £
Q oozoé ) Q 0.3 :
WN\W/WMM 02 |
ovooo: - e e 0.1
o] 20 40 80 80 100
k 0 o Tt e
0 10 20 30 40 50 60 70 80 90 100
FIG. 1. D4, vs k (k=1,2,3,...) for a typical DNA sequence, k
HUMDYZ1 (length=3564), showing short-range dominance of
nucleotide correlations. The straight line indicatesD4.5; (f.b.), FIG. 2. Dy, 4 vsk (k=1,2,3,...) for English language. The En-
see Eq.(4). To save space, onlk<100 are plotted. Fok>100 glish passage&@bout 30 000 lettejsare taken from technical refer-
D\'s are always below the bound. ence of Windows 95. It shows clearly the short-range dominance of

letter correlation. The curve decreases rapidly to a value near the
(2N In 2)D,~, obeys ay? distribution with 9 degrees of average of an independent sequence. To save spacekeri90
freedom asN—o. Thus, the fluctuation boundd.b.) for are plotted. Fok>100 D,’s always fluctuate around the average

random sequences value.
D,(f.b.)=8.15N, 90%) the main maxima are located &r=1 and 2 neighbors.
So, the nucleotide correlations in the nearest-neighboring
Dy~1(f.b.)=15.65N (4) and next-to-nearest neighboring sites are dominant fies

The third lines give the percentage of sequences with a short-
(99% confidence levgl (The second equation also holds for tail base correlation. The short tail meanB,.;
independent sequengeThis means that for a random se- <1.5D,,,(f.b.) ask=3. From the tables we see that the
quence with a length of 1000 only 1% &,’'s, namely, sequences with short-tail correlations amount to 25—50% for
about 10 of them, may exceed the bound. Since most DNAoding regions but only 5—20% for complete sequences. Fig-
sequences analyzed by us have length 1000 to 4000, to guarre 1 gives a typical example &f,. ; versusk for sequence
antee information carrying to eadh higher than some de- HUMDYZ1 (GenBank sequence identification codeEhe
fined bound we shall multiply a factor 1.5 to the above results prove the short-range dominance of base cor-
Dy~1(f.b.)(15.65N), which will be defined as the actual relations in coding sequences. For complete sequences the
fluctuation bound. short-range dominance of correlations exists, too, but most

Based on the above results we can discussktdepen-  parts of them have long tails.

dence ofD, and split off the fluctuation effect due to finite Since the nucleic acid sequence, as a whole, plays its role
length. The results calculated from 3709 coding sequences biological activity, it is generally anticipated that the se-
and 2883 complete sequendesmch complete sequence in- quence will show long-range correlations. However, we have
cluding coding regions and introns,/-Baps and 3tails)  found short-range dominance of base correlations in coding
from 1991 GenBank are shown in Tables | and Il. The firstand many complete sequences, which is unexpected. Part of
lines in both tables refer to the category average of correlathe above results was obtained by us in R&f. The univer-
tion strength of main maximum iD,,, [in unit of sal existence of strong nucleotide correlation in adjacent sites
Dy.1(f.b.)]. The second lines give the percentage of seof DNA sequence is an important characteristic of genetic
guences with main maximum located on the nearestlanguage. The feature is more notable for coding sequences
neighboring k=1) and next-to-nearest neighboring=2) since the correlation with a short tail occurs more frequently
sites. We find that for most sequend&®% to more than in these regions. Therefore, in spite of many long-range in-

TABLE lIl. The statistical distribution oF ) in coding sequences.

Pri Rod Mam Vrt Inv Pin Bct Vrl Phg Org
Correlation 17.5 6.6 7.0 7.8 6.9 5.9 29 4.8 2.2 1.8
strength
Main max. at 82.0 87.4 81.8 86.1 79.4 85.1 41.8 50.0 29.9 11.9
k=1,2(%)

Short tail (%) 13.7 18.4 9.1 20.4 10.9 13.2 21.4 26.5 30.6 34.5
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TABLE IV. The statistical distribution of-(,,, in complete sequences.

Pri Rod Mam Vrt Inv Pin Bct Vrl Phg Org
Correlation 12.3 10.9 12.0 11.8 9.6 7.3 6.4 8.3 5.8 3.6
strength
Main max. at 97.0 97.5 96.3 94.3 84.5 92.9 78.1 71.9 67.2 39.0
k=1,2(%)
Short tail (%) 1.0 23 2.8 1.0 2.8 5.1 23 21 3.2 8.0

teractions between nucleotides, there exists a definite singuences and 2883 complete sequences and found that the
plicity against the complex background—the strong shortimodes CG and TA are the strongest for most sequences. As
range correlation of adjacent bases. an example, Tables Il and IV give the statistical distribution
How can we understand the short-range dominance o#f Frqga versusk. We find that for these main modes of
base correlation in DNA sequences? It is related to somBase correlation the short-range dominance still holds, but
frequently occurring words with 2—3 bases in genetic lanthe percentage of sequences with short tails is largely low-
guage. We have found these words through preferentiared as compared with, . The reason in part lies in that the
mode analysig§24]. To understand this point we compare overall factor 1.5 has been used in the fluctuation bound.
genetic language with the English language. In English ther&ctually, due to different degrees of freedom Df.., and
also exist many frequently used words and syllables. We cafiatop & factor larger than 2 should be multiplied in the
also calculateD, versusk and investigate the correlation of —a(gb CaSe. . . . .
letters. Figure 2 gives an exampledf versusk in English, From previous discussion we know that the difference in

which shows the short-range dominance clearly. gorrelatpn th b(;ztween hcodmg an?] nonqlodmg Isgquen%es
The informational redundand,.., can be rewritten as 0088 €Xist: The former has more short-tail correlations than
k+1 the latter. But both the coding and complete sequences show

1 Fatob strong corre_lations between adj_acer)t bases. A large part of
Dk+1%ﬁ > , (5)  the long tails of base correlation in complete sequences
Nzab PaPo comes from noncoding regions, but it seems not mainly from
where introns. The stati;tical_ data on base correlation in 924 intron
sequences are given in Table V.
Fa(k)b:(pa(k_l)b_papb)z (6) Spectral Analysis and long-range correlatioBpectral

analysis of a nucleotide sequence after it has been changed
is defined to describe the particular base correlatian ( into a numeric sequence, or more directly, of a correlation
=1,2,3,..Pa0)p=Pab). It can be proved that, for an inde- functionD, may give more information on nucleotide corre-
pendent sequence, lation. An important feature is the many peaks in the spec-
trum. Especially for coding sequence there is a universal
resonance peak at/N=1/3 (N=sequence lengih Evi-
dently, the phenomenon is related to codon triplets in the
sequence. Referen€#5] gave a thorough analysis of its ori-
obeys ay? distribution with 1 degree of freedom. So, one gin and demonstrated that the 1/3 peak occurs in the spec-
has trum if and only if the base composition is not uniformly

distributed in three codon positions. The theorem can be gen-

NFaib
Pa(1—pa)Pp(1—pp)

6.63
Fagop(f0)= 5~ Pa(l=Pa)Ps(1-Py) (7

(99% confidence level
There are 16 kinds of base correlations includedin

eralized to explain other kinds of peaks in the spectrum. So,
a spectrum line means the inhomogeneous distribution of
base composition in a given range. It is reasonable to infer
that the abundant spectrum lines existed in the high-
frequency range are related to short-range dominance of base

We have studied each base correlation for 3709 coding seorrelations.

TABLE V. The statistical distribution of correlations in introns.

Dy Fecwe Fraga
Pri Rod Mam Vrt Pri Rod Mam Vrt Pri Rod Mam Vrt

Correlation 6.0 6.0 4.8 34 117 9.5 8.0 5.1 3.0 2.3 2.6 2.2
strength

Main max. 98.2 95.1 95.2 884 96.3 974 935 82.7 56.1 43.8 59.7 42.1
atk=1,2

(%)

Short tail 66.3 584 59.7 78,5 36,5 39.2 29.0 52.1 383 441 30.6 56.2

(%)
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We have pointed out the short-range dominance of base P
correlation and its universal property. But what about the M
long-range component of the correlation? Is there any pecu-
liarity about long-range correlation in DNA sequences? The
problem can be approached through investigating the low E
frequency behavior of the power spectrum of sequences. Ap- 10 4
plying a FFT (fast Fourier analys)jsmethod to each se- ]
guence, many long-period components in the spectrum of
base correlation can be found. We calculate the percentage of
sequences that have marked components of correlation with 10 -]
a long period larger than 100 in the spectrunDgfand the ]
average spectrum @F ,p)ap- The data include 3720 cod- E
ing sequences and 2895 complete sequences. The result ™ 7 "% T e ome
shows that On|y 1%0r |esg of Coding sequences and E(% (a) Entryname: HUMDYZI  Length: 3564  Accession: X06228 PRI
less of complete sequences have such long-period correla- P
tions. v

We define the power spectrum as

N . 2 1
2miky 1

P,=|> Dyi1exp—go—| . ®)
K=1 N :

We then investigate the relation between power specPym ]
and frequencyv (or inverse periodfor each sequence and 107
check if the power spectrum can be put in the form ]

P,=cv @ 9) ] v

T L e e A T T T
1 10 100 1000

(b) Entryname: HUMPDGFA Length: 2305 Accession: X06374 PRI

for low v. By linear regression of IR, versus Inv (In P,
=—aln v+B) we find for sequences with long-period cor- P
relations (period- 100) that the low frequency behavior can M
be classified into three categorig4) For 60% or more of
the sequences the linear relation holdsd a# 0) in the low
frequency region with deviationo<1(oc=[2{In P,—
(—a In v+ B)}4Y%n) [see Fig. 8a)]; (2) The linear relation 10
holds only approximately with £ <2 [see Fig. 8)]; (3) ]
No linear relation but strong oscillation can be found be-
tween InP, and Inv [see Fig. &)]. The average spectrum
exponentsy for various species are shown in Table VI. For
most (about 60% sequences with long-period correlations ]
they take values betweenl and — 2. However, it is dem- ] v
onstrated that if the sequences are stochastically chosen then 1 T T T T T T T T ke

these eXponentS take Va|UeS ne_a®5 Many WOI’kS prO' C Entryname: HUMLPLR Length: 1428 Accession: X14390 PRI
posed the power spectrum of ¢ type but their results are ~ FIG. 3. Log-log diagram for power spectruf{) vs frequency
scattered due to different samplings and statistical methodg (@ for sequence HUMDYZ1 (length3564), showing a good
[6,8,13. They all neglected the difference between se-inear refation; (b) for sequence HUMPDGFA (length
quences with and without long-period correlations. We em-~2305). showing an approximate linear relation; doli for se-
phasize the large inhomogeneity in spectrum exponents frofi“ence HUMLPLR  (lengti 1428), showing no linear relation
sequence to sequence. Only for a part of the sequences theé(fStEd'
have long-period components in base correlation the low fre-
qguency behavior of the power spectrum takes the form o
1/v* with a=1-2.

10 74

Since adjacent base correlation is the main part of corre-
Iations between nucleotides, the correlation property in cod-
ing sequences can be described throllghapproximately.
D, describes the grammatical construction of genetic lan-
I1l. EVOLUTIONARY DEPENDENCE OF SHORT-RANGE

CORRELATION IN CODING SEQUENCES TABLE VI. The averaged spectrum exponedmtin sequences

Dobzhansky said that everything in biology will be non- with long-periodicity-correlation for given deviatio.

sense if it is not viewed from evolution. In this section we
will study the statistical correlation between nucleotides
from the point of evolution. We shall demonstrate the adjao<s<1 1.29 116 151 1.25 124 1.32 1.40 1.10
cent base correlation increasing with evolution. This is thej<g<2 093 160 1.27 163 121 131 1.16 085
very reason why base correlation is important in biology.

Prii Rod Mam Vrt Inv Pln Bct Vil
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TABLE VII. The informational parameters of coding sequences.

Pri Rod Mam Vrt Inv Pin Bct Vrl Phg Org
(Dq) 0.029 0.016 0.031 0.024 0.047 0.033 0.037 0.036 0.040 0.067
(Dy) 0.059 0.059 0.055 0.056 0.037 0.030 0.032 0.037 0.021 0.022

(X) 0.71 0.80 0.68 0.73 0.54 0.52 0.56 0.56 0.45 0.36
(F) 0.54 0.53 0.56 0.51 0.48 0.46 0.52 0.46 0.43 0.40

guage, whileD; describes its vocabulary composition. And (n=1, 2, and 3; the case of—1=0 means the third subse-
one can defin&=D,/(D;+D,), which describes both as- quencg, in which pg”) denotes the probability of basein
pects. On the other hand, tleet C content(denoted byF) is  the nth subsequence, etc. In 1990 we made the subsequence
also introduced to describe the variation of strong-bond comanalysis on 1024 coding sequences with length 1200 base
ponents of DNA sequence in the course of evolution. Wepairs [17]. Recently, a similar analysis was made for en-
calculate the informational paramet&s, D,, X, andF for larged data—8226 coding sequences with length000.

each sequence, average them in each category of species, @8wth analyses give the same result. The results are tabulated
then study their evolutionary dependence. The first study wag Table VIII. Combining Tables VII and VIII we find that
done based on 1985 GenBank data with some compleme(192> and(D(21)> for the four higher species—Pgprimate,
where 732 coding sequences and 0.8 million base pairs haygod (rodeny, Mam (other mammalian and Vrt (other
been statistically analyzdd]. Next, we used 1987 GenBank vertebratg—are higher than Invinvertebrate and Vrl (vi-

data and studied 1944 coding sequences with 2.5 milliopg)), the parameters of Inv and Vrl are higher than @llan

base pairs. Recently, we utilized 1991 GenBank data angnd Bct (bacteria), and the latter are, in turn, higher than
their catalog on 8226 coding sequences with 15 million basthg (phagé and Org(organelle. (D§Y) changes in a wider

pairs. The results of three statistical investigations are CO¥ange thar(D,). However, there is no evolutionary correla-
sistent with each other. The results recently obtained are '

listed in Table VII. From Table VII we see thdD,) is a TABLE VIII. The informational parameters of subsequences.

small quantity,~0.03, which decreases roughly with evolu-

tion but the trend is not clea¢D,) increases gradually from n (D{My (DM (XM (FMy
lower organisms to higher species, which shows the basg .

correlatiogn strengthene% in thg course of evolution. The main L 0.066 0.098 0.62 0.57
trends of(X) and(F) changing with evolution are the same 2 0.051 0.065 0.59 0.44
as(D,). Of course, the formation and bifurcation of species 3 0.135 0.083 0.49 0.62
in evolution is a complicated process. The informational pa-ROOI 1 0.055 0.102 0.67 0.55
rameters change with time. However, as soon as a new spe- 2 0.049 0.060 0.57 0.42
cies has formed, its phenotype and gene structure begin to be 3 0.091 0.087 0.57 0.61
stabilized(the punctuated evolution as stated by some bioloMam 1 0.071 0.086 0.60 0.57
gist9. So, the result obtained by use of the present data can 2 0.060 0.063 0.54 0.42
reflect the evolutionary history. On the other hand, “evolu- 3 0.20 0.076 0.42 0.68
tion is a mender” as said by Monod. The complexity of Vrt 1 0.074 0.091 0.58 0.55
evolution and the individual difference in biology make 2 0.064 0.073 0.55 0.42
many exceptions to any general law. The correlation of in- 3 0.110 0.087 0.60 0.57
formational parameters with evolution could only be mani-inv 1 0.089 0.050 0.39 0.53
fested through a coarse-grained average. The experience in 2 0.084 0.089 0.54 0.41
our statistical investigation shows that the coarse-grained av- 3 0.186 0.091 0.40 0.51
erage is not an expedient measure but an appropriate form tgn 1 0.080 0.038 0.34 0.51
express the biological complexity. 2 0.070 0.077 055 0.40
In order to show the differenqe in three positions of a 3 0.125 0.076 0.44 0.48
chon we break the data of codmg. regions into three congg 1 0.097 0.035 0.28 0.58
stituent subsequences. We define informational parameters 2 0.052 0.067 0.59 0.41
of subsequences. For example, 3 0.164 0.094 0.48 0.56
Vrl 1 0.064 0.054 0.47 0.50
N N n 2 0.040 0.057 0.60 0.43
D )=2+§a: pyY log, py" . (10 3 0092 0055 0.52 0.46
Phg 1 0.075 0.030 0.31 0.52
2 0.064 0.068 0.55 0.39
n_ _ (n) (n) _ (n—1) (n—1) 3 0.140 0.055 0.35 0.39
D2 é Pa” log; pa g Pa” ™ 10g; P Org 1 0.078 0.032 0.37 0.48
2 0.077 0.082 0.60 0.40
3 0.199 0.073 0.30 0.31

+§ pih " log, ply " (11)
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TABLE IX. The informationalD, of noncoding sequences as compared with coding regions.

Imunoglob Mammal Eukaryot E. coli Prokar Virus
5'-cap 0.037 0.033 0.111 0.036 0.094 0.089
3'-tall 0.034 0.058 0.106 0.023 0.056 0.058
Intron 0.061 0.064 0.124
Coding 0.027 0.026 0.037 0.017 0.045 0.026

tion for (D$?)) and(D$>). This shows that the neighboring evolutionary dependence is more obvious in our information-
base correlation between two codons has the strongest eviheoretic approach.
lutionary dependence. For parame{et), Pri, Rod, Mam, The most direct and obvious representation of the evolu-
Vrt take higher values than Inv, Pln, Bct, Vrl, and the lattertionary relationship is preferential mode analysis done re-
higher than Phg and Org. The same is true(®fV)). Next, ~ cently by us[24]. The nucleic acid sequence is reduced to a
we find that these parameters for viruses take larger valudwo-letter sequence written &(=C or G) andW (=A or
which are near their hosts—invertebrates. This supports th€) or by R (=A or G) andY (=C or T). The preferential
view that viruses could not be primitive life but retrograde modes of dinucleotides and trinucleotides are emphasized
type in evolution. Organelles include mitochondria and chlo-Since the nearest-neighboring and next-to-nearest neighbor-
roplasts. They occupy a very low level, which supports theng correlation of bases are the most important ones. We
symbiosis theory about the origin of these organelles. Andefine the ordered fragmenty(,...,Yy),, Y;e(SW) or
other interesting result obtained by subsequence analysis (R Y) and n—repetition times of ¥,,...,Y,). From se-
D{® much larger thaD{") andD{?, and varying from one quence data the frequency of maue-= (Y ,...,Yy), denoted
species to anothdf.7]. asN.,, is calculated first. We then define and calculate the
The base composition and base correlation are inhomogéelative mode contertRMC)
neous for different segments of DNA sequence. The above
discussion is done for protein-coding regions. We have stud- Npm— (N
ied the noncoding sequences too and found their informa- Wp=——"".
tional parameters largely different from the coding region.
An important law is the followingD; in all noncoding re- i ) . ,
gions are larger than the corresponding coding regaee (N, is the expectation va_lue of _mpde fr_equgncy in the in-
Table IX, which is taken from Ref1]). The reason may be dependent sequence anq its deviation. Likewise, one can
due to the regulating and controlling signals existing fn 5 calculate the relative ordered-fragment cont¢ROFQ
caps, 3-tails, introns, and other noncoding regions, whichthrough the numeration of the ordered fragment

(12

Om

decreases their informational entropidg The resultis also (Y1, -+ Yidn (N=2.3,...)
consistent with linguistic analysis in R4R7].
The evolutionary dependence of information parameters Nmn— (Nmn
exists not only in the statistical average of a large amount of mn— - 13

. . .. Omn
unrelated genes, but also in some particular gene or protein if

the latter has enough sequence data and occurs in a wide

range of species. We have studied 37 MKtyosin heavy Wm(Wmn)>1 means preferred mod#y,(Wpy) <1 means
chain genes and the results for coding and complete gePoor _mode. Further, to describe the deviation of sequence
quences are shown in Table X. The results are consistefoM independent sequence one may sum up the modes for
with Ref. [28], which uses the DNA walk method but the gg’:n k and reading frame (i=1,2, ... k). Define devia-

TABLE X. The informational parameters of MHC genes.

(D) (D (XY (P Uki:2_k§ (Wi)2. (14)
Pri coding 0.051 0.086 0.64 0.55
complete 0.028 0.089 0.78 0.53 |t can be shown that),; is related to informational redun-
Rod coding 0.048 0.077 0.65 0.56 dancyD, (ask=2), D5 (ask=3), etc. but with a given
compete 0.031 0.067 0.75 0.54 reading frame.
Mam coding 0.065 0.088 0.58 0.58 We have studied 6:810° bp sequence data and found all
complete 0.061 0.085 0.59 0.57 preferred(and pooy modes ofk=2 and 3. Several examples
vrt coding 0.034 0.081 0.73 0.48 for exons are shown in Table XI. The RMC and RO@Gth
complete 0.029 0.069 0.74 0.46 number in brackets showing the repetition times of mode
Inv coding 0.049 0.053 0.58 0.49 are tabulated. The data indicate clearly the evolutionary de-
complete 0.047 0.036 0.50 0.44 pendence of these modes. The deviatiods;(S-W),
Pln coding 0.076 0.042 0.34 036 Uy(SW), and Uy(R-Y) for exons and Uy(R-Y),

complete 0.080 0.040 0.32 0.36 Ug(R-Y) for introns, 8-caps, and 3tails are correlated
with evolution, too, which can be found in R¢R4].
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TABLE XI. Relative ordered-fragment contewt,, andW,,,, of preferred modes.

Pri Rod Mam Vrt Inv PIn Bct Vrl Phg Org
Exon
SWS 441 4.69 5.57 4.20 1.96 0.82 2.28 1.67 0.47—-1.86
SWS?2) 2.23 2.54 2.65 2.36 1.33 0.64 1.19 0.79 0.61 —0.48
SWS3) 2.32 211 3.20 2.23 1.42 0.64 1.10 0.96 0.58 —0.12
SWS4) 2.39 1.94 2.52 1.92 1.50 0.76 0.61 0.70 0.09 0.19
WWS 1.85 2.20 3.02 2.73 1.52 1.85 0.81 0.18 —0.12 —1.42

WWS(2) 1.29 1.47 2.02 1.82 0.89 1.18 0.39 0.33 —0.12 —-0.47
WWS(3) 1.10 1.28 1.85 1.71 1.07 1.08 0.38 0.39 —0.05 —0.28

Through the above analyses we have found many pre-
ferred modes ir8-W language for exons and many preferred == % PbPajb 1092 Pajb (15
modes inR-Y language for introns, 'scaps and 3tails[24].
It seems that exons preferentially uSeW language and andHM*
these noncoding regions preferentially uReY language.
The different preference of genetic languages in coding and .
noncoding sequences can be explained by their functional HM" =2 p, log, pa— 2 Pa(1)b 1092 Pa1)b
difference. TheS-W representation is more convenient for a ab
the coding region in its translation and proofreading since
two strands of DNA are precisely the sameSitW language. =—2 PoPajp 100 Pajp+ (16)
The R-Y reprsentation is more useful for noncoding regions ab
in the regulation and control of gene expression since th
sites of large local deviation in DNAwhich are recognized Br C+G contentC
by repressors and enzymeare presumably determined by C=pc+ps. (17)
an R-Y rather than ars-W sequence.

The evolutionary dependence of short-range correlation imamely,
coding sequences can be shown not only in informational
parameter®,, etc. and preferential mode analysis, but also SH —)\O5N—)\15HM—)\25HM* =0 (18)
in other statistical properties of the sequence. For example,
the eigenvalue and limit-approaching length of the probabil-or
ity matrix [17], the fractal dimension of the 2D DNA walk
[5], etc. On the other hand, since the short-range correlations SH—Xo8N—X\;8HM—\,6C=0. (19
of nucleotides are correlated with evolution, we can recon-

struct an evolutionary relation with this knowledge. Based orf "0M Eas.(18) and (19) the probabilitiesp, for each se-
base probabilitiep, and conditional probabilitiepy,, and ~ duence can be found. Through calculationpgf for 1469

Pojar (* Means any bageve have succeeded in deducing the protein-coding DNA sequences of various species we find

evolutionary tree by classifying 165 rRNA sequence datdhe deviations of the theoretical probabilities from the ex-
[29]. perimental values are generally lower than 10%. Moreover,

Evolutionary mechanismiucleic acid sequences evolve € Lagrangian multipliers averaged over each category are
under two factors, namely, random mutatidirgluding in- cqrrelated Wl'_ch evolut|0_n. The agreement of MIP analysis
sertions, deletions, and recombinatignshich cause the en- with opservanonal da_ta is satlsfacto_ry. So the above_ assumed
tropy H to increase, and natural selection, which cause th&volutionary mechanism of nucleotide sequences is reason-
Markovian entropy to decreasthe increase of base correla- 2P€ and their formation can be explained under the MIP
tion). The latter can be viewed as some constraints imposeRinciple basically in spite of the complexity inherent in the
on the random drift of bases. By using the maximum entropy£Velutionary process.
principle (MIP)—a general principle for the nonequilibrium
system suggested by HakgB3]—we can express the evo- IV. DNA WALK

lutionary mechanism of joint action of random mutation and f h di dth . its obtained b
natural selection successfull25]. Following MIP, the en- So far we have discussed the main results obtained by us
' ' on base correlations in DNA sequences—the finding of

tropy H is maximized under constraints short-range dominance of the correlation and its evolutionary
N=Sp,—1 dependence.. In these discussions_different mgthods have
a been synthetically used but the main approach is based on
i M information-theoretic consideration. Recently, 1D DNA walk
and fixedH as a method to investigate nucleotide correlation appeared

widely in physical literature$7,8,11,28. However, follow-
ing Silverman and Linsker, each symbol sasymbol se-

HM= lo - lo
za: Pa 102 Pa ;k; Pab 042 Pab quence can be represented by a vertex in ghel() simplex.



PRE 58 STATISTICAL CORRELATION OF NUCLEOTIDES INA.. .. 869

TABLE XII. The averaged fractal dimensions in 3D, 2D, and 1D DNA wglkimate.

Code Intron Cap Tail Complete Code Intron Cap Tail Complete
D, 169 156 147 1.53 1.56 D, 180 160 153 1.65 1.67
3D D, 138 140 126 1.33 1.33 1DD, 159 157 1.48 149 1.67
D; 138 138 131 1.37 138 RfY) Dy 150 152 148 1.50 1.58
D, 165 151 141 147 1.50 D, 151 148 141 141 1.40
2D D, 135 139 122 1.30 1.37 1bDb, 127 128 1.14 1.26 1.22

D, 1.36 138 126 134 136 SW) D; 129 130 117 1.30 1.30

So, for the nucleotide sequence the mapping space is three N=nx+ng+ne+nt.
dimensional6,10,30J. The 3D DNA walk is the most com-

plete one that considers four bases equivalently in basgo, forny~ng~n,~ns, we have
space. In the following we shall generalize DNA walk into

three-dimensional space. By usifgL mapping, putA, C,

2__ 2 2_1\_._n2
G, andT on the four vertices of a tetrahedron. We use the 3R;=4n ; (p3—32)=n"In2D4(n),
following representation of nucleotides in whickh corre-
sponds to a walk in the direction« j + k), C corresponds to (pa=na/n, a=A,G,C,T),

(—=i+j—k), G corresponds toi(-j—k), andT corresponds

to (—i—j+k), respectively. So the projection of DNA walk s In2 )

on theX axis is purine alongt X and pyrimidine along the (Rn)~=—3~ n%(Dy(n)), (25

— X direction; the projection of the DNA walk on the axis

is A and T (weak bond along +Z and C and G (strong  \yhereD,(n) means the first-order information redundancy
bong along the—Z direction; the projection of DNA walk  for g window with lengtm. The average in Eq25) is taken

on theY axis isA andC along+Y, andG andT along the  oyern-bases fragments along the sequence. Since the depen-
.—Y direction. The mean square separation pf the end pointgence ofD4(n)) onn is not in a form of power function for

in a sequencelength N) containingn bases is denoted by 5 |arge variation oh, the linear relation between(R)y and

(RA)n - The local fractal dimensiofFD) is defined by[5] In n holds only in regiorg, i.e., forn small as stated before.
N1 Set(D,(n))~n"# for smalln. For a random sequencg,
dy(n)=In _/ In{(R2, )n/IN(R2)\ M2 (20) =1.Ifa sequence has a strong bias of base_s, then the change
n of D4(n) with n will be weaker than that in random se-

quence. This leads t8<<1 and a relatively smalD, [D,
~2/(2—B)]. On the other hand, whem>N/2, the window
with n bases can be shifted along the sequence only for a few
times and one has a large fluctuation about the ave(@ge
D¢=(dn(n))ns2- (2D This makes the fractal description through end-point separa-
tion impossible. Equation®0)—(25) give a relation between
Here the average is taken over differerfn<N/2). More-  fractal description and information-theoretic description.
over, from the log-log diagram of end-point separation ver- We calculate fractal dimensior3,, D, andD; in 3D
sus base pair number in 3D DNA walk we found a goodDNA walk, 1D purine-pyrimidine walk, 1D strong-weak
linearity remaining between (B2 and Inn in a range of bond walk and 2D walk for each sequence. The 2D DNA
20 bases and a comparatively good linearity in 400 basesvalk is defined by map of the sequence onto 2D plane in

We found thatdy(n) changes smoothly only far<N/2 as
in polymer chains in configuration spaf®l]. So an aver-
aged FD is defined, namely,

So, we can define two other quantities, which A, C, T and G correspond to+X, —X, +Y, and
=Y, respectively. More than 1000 sequences are calculated
Da=(dn(N))a (22 and a part of result¢for primate only are listed in Table

XIl. (The details of the results can be found in H&#4].)
From Table XII we find the following.

Dp={(dn(n))p, (23) (1) D;>Dy~D;. SinceD, is the rigorous fractal dimen-

sion defined in a range of 20 bases, the result shows the
where(- --), means the average over first 21 bagefrom 1 long-range(larger than 20 basggorrelation lowering the
to 21, or Inn from O to 3 and(---), means the average from average FD. The point can also be seen from a plot of
22nd to 403rd basedn n from 3 to 6. The above analyses In(R%)y versus Im in which the curve goes slightly up from
show that the FD can be defined rigorously only in regions ofa straight line fom larger than 20.
20 bases but it can be generalized to about 400 bases or half (2) The FD in the 3D walk is slightly larger than that in

and

the length of the sequence approximatdha|. 2D and they are both smaller than the 1D purine-pyrimidine
In 3D walk it is easily shown that the square separation of R-Y) walk and larger than the 1D weak-strong boiSW)
end pointsRﬁ obeys walk. The 3D walk includes three kinds of 1D walks as its

5 s o projections. The purine-pyrimidineR{Y) classification of
3Ry=4(nz+ng+ng+n7)—n?, (24 nucleotides is related to the hydrophobic-hydrophilic charac-
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teristics of encoded amino acids. The classification of wealirom the point of evolution. The following points should be
and strong hydrogen bonds is also important for the biologinoticed seriously32].
cal function of nucleic acids. These two walks are more im- (1) Strong noise background and small informational re-
portant than the third one. The 2D walk defined above has itdundancy of DNA sequences due to the pressure of neutral
projections in the direction dft-j andi—j corresponding to or nearly neutral mutations of bases in the evolution.
S-W walk andR-Y walk, respectively. So the fractal dimen-  (2) Short-range dominance of base correlations and its
sion in the 2D walk is approximately equal to that in 3D. evolutionary relationship. The short-range dominance is
However, the two 1D walks-R-Y type andS-W type—take nearly universal for all sequences. The evolutionary depen-
much different values of fractal dimensions. The former isdence exists only for coding sequences and in the coarse-
larger than the latter and the fractal dimensions of 3D and 2[¥rain average. These points have been indicated and dis-
walks lie in the middle of them. The 1B-W walk taking a  cussed thoroughly in Secs. Il and Il in this article.
smaller FD than th&®-Y walk can be explained by calcula-  (3) Division of the language into two kinds—coding re-
tion of D, in reduced languages. We have proved fain  gion and noncoding region—and the existence of the reading
S-W language is larger thald, in R-Y language. frame (inhomogeneity of base compositjom coding se-
(3) D of coding sequences takes value between 1.1 anguences.
1.4 for 2D and 3D walks and between 1.2 and 1.5 for 1D (4) Different vocabularies in coding and noncoding se-
R-Y walks. The deviation of these dimensions from 2 showgjuences. The coding sequences preferentiallySi¥¥ lan-
the existence of base correlation even in coding region. Thguage and many noncoding sequences preferentialliRuge
result is different from Ref[7], wherea=0.50 is reported language. The particular vocabularies in some noncoding re-
for some cDNA sequences which corresponds to DByr  gion lead to its relatively larg®, (see Sec. I\
=2, (5) Inhomogeneity of long-range correlation property.
(4) D, of coding sequences is found to be larger tRgn ~ Several percents of sequences in single-copied genes show
of corresponding introns, &aps and 3tails. This implies  the long-period of base correlation which obey* law with
possibly that some regulation signélsased in base compo- a=1—2. The law seems related to fragment repetitipBis
sition) with length smaller than 20 bases occurred in thesdsee Sec. )l
noncoding region§l,27]. (6) G+ C content. In addition to adjacent base correlation
The above results are consistent with that obtainedhe most strong evolutionary relationship in base composi-
through the information-theoretic method. However, thetion is G+ C content, which provides a constraint to random
fractal dimension and the end-point separation in the DNAmMutation(see Table V).
walk are determined by first-order informational redundancy (7) Maximum information principle that describes the
D,(n) versusn. Its relation to base correlation is not clear. evolutionary mechanism basically. The evolution of nucle-
So, the property of short-range dominance of base correlatide sequences is dominated by two major factors—random
tion which has been found in the information-theoretic mutation that maximizes the entropy and the natural selec-
method could not be demonstrated obviously in this aption which strengthens the statistical correlation between

proach. bases, especially the correlation between neighboring bases.
The MIP, as a formulation of molecular evolution, can sum-
V. CONCLUSION: THE STATISTICAL marize the above mechanism and it achieves success in the
CHARACTERISTICS OF GENETIC LANGUAGE StUdy of COdmg Sequencésee Sec. Il
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