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Statistical correlation of nucleotides in a DNA sequence
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We review methods in the study of nucleotide correlation in DNA sequence, and demonstrate two basic
properties of the correlation through statistical analysis, namely, the short-range dominance of nucleotide
correlation in most DNA sequences and the coarse-grained evolutionary dependence of the short-range corre-
lation in coding sequences. A corresponding evolutionary mechanism is suggested. By the use of spectral
analysis a large inhomogeneity in long-range base correlations for different sequences is indicated. Some
results on three-dimensional DNA walks are reported. The linguistic differences between coding and noncod-
ing sequences are also indicated.@S1063-651X~98!01107-6#

PACS number~s!: 87.10.1e, 02.50.2r, 05.40.1j, 87.15.2v
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I. INTRODUCTION

The nucleotide sequence data stored in GenBank h
exceeded hundreds of millions of bases and they increas
ten times each five years. A great deal of information, s
as the origin of life, the evolution of species, the develo
ment of individuals, and the expression and regulation
genes, exist in these sequences. On the other hand, the n
otide sequences are generally close to random sequence
example, the information parameter analysis shows that
first-order informational redundancies of most coding
quences are lower than 0.05@1#. Where is the information
stored then? A key point is the base correlation existing
the DNA sequences. In fact, base correlation is the basis
the grammatical construction of genetic language.

Thus, investigation into nucleotide correlation is of sp
cial importance. In recent years many authors have discu
the correlation properties of nucleotides in DNA sequenc
To our knowledge, there are at least six methods that h
been proposed to study the correlation property of nu
otides in DNA sequences:

~1! The method of informational parameters@1–4#: The
authors defined Markovian entropy with lag or mutual info
mation to describe the nucleotide correlation between a
cent or nonadjacent sites in the sequence.

~2! DNA walk and fractal analysis@5–11#: The sequence
has been mapped onto a one-dimensional walk@7,8# or more
completely, onto a two or three-dimensional~2D or 3D!
walk @5,6# and a corresponding fractal analysis is given.

~3! Correlation spectrum method: Some authors charac
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ized the symbolic sequence by decomposing it into bin
sequences and quantified the base correlation, and th
spectral analysis has been done@12–15#.

~4! The method of subsequence or inhomogeneity an
sis @15–19#: This emphasizes the inhomogeneity of the thr
positions in a codon and provides an approach to finding
reading frame in DNA sequence.

~5! Preferential mode analysis@20–24#: This method ex-
amines the preferred modes and poor modes in DNA
quences of a variety of species. The preferred modes ma
related to specific codes of nucleotide sequences.
method is of great importance in the linguistic analysis
hereditary information.

~6! A method of evolutionary or dynamical mode
@25,26#: The nucleotide correlations are investigated un
an assumed evolutionary model or other dynamical mo
which can account for both random mutation and natu
selection in the formation of DNA sequences.

The problems that have been extensively discussed in
physical literature as follows are: What is the fundamen
characteristic of the nucleotide correlation? Is there any u
fied picture on fractal-like organization about the long-ran
correlation? How do we estimate the correlation length o
sequence in the presence of fluctuations? What impor
differences in base correlation are there between coding
noncoding sequences? Does the correlation show any ev
tionary dependence and what is the mechanism respon
for its evolution? It seems there is no generally accep
conclusion on each of the above questions. In this article
shall discuss some aspects of these problems. The orga
tion of the article is as follows. In Sec. II we shall report th
short-range dominance of base correlation in coding
many noncoding sequences and analyze the linguistic im
cation of this result. By the use of a spectral analysis met
we shall also indicate the large inhomogeneity for the sp
trum exponent from sequence to sequence. So, in contra
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TABLE I. The statistical distribution ofDk11 (k51,2,...) in coding sequences.

Pri Rod Mam Vrt Inv Pln Bct Vrl Phg Org

Correlation 9.0 7.3 7.0 9.8 6.9 4.0 3.2 5.5 2.2 2.
strength
Main max. at 89.5 93.8 92.7 81.5 63.3 74.4 66.0 84.8 40.9 47
k51,2(%)
Short tail ~%! 23.3 33.2 28.2 24.1 14.9 24.2 35.5 50.9 45.1 42
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short-range correlations, it seems that there is no unified
ture on the long-range component of nucleotide correlat
In Sec. III we shall indicate, in a coarse-graining sense
evolutionary dependence of the short-range correlation
coding sequences and propose a formulation, maximum
formation principle, to describe the mechanism of seque
evolution. Since many works on DNA sequences in the
erature are based on the DNA walk, in Sec. IV we sh
generalize a 1D walk to a 3D walk, which is the most co
plete one, considering four bases equivalently in base sp
and report some results on base correlation with this
proach. In the last section we shall summarize the statis
peculiarities of genetic language that should be conside
seriously in the attempt to establish a reasonable mode
genetic language.

II. SHORT-RANGE DOMINANCE
OF BASE CORRELATION

The nucleic acid sequence as a genetic language ca
investigated by an information-theoretic method. We int
duce informational entropyH and its related redundancyD1 ,
which describes the divergence from equiprobability of fo
bases~the vocabulary composition of genetic language!:

H52(
a

pa log2 pa ,

~1!

D15Hmax2H522H,

where pa is the probability of basea occurring in the se-
quence, and the summation runs over all four bases, ade
(A), cytosine (C), guanine (G), and thymine (T). Hmax is
the maximum value ofH, which is taken when the fou
bases occur equiprobably in the sequence.

We introduce Markovian entropyHM ~averaged condi-
tional entropy! and its related second-order information r
dundancyD2 , which describes the~neighboring! base corre-
lation in the DNA sequence.
c-
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HM52(
a

pa(
b

pbua log2 pbua ,

~2!

D25H2HM52H1(
a,b

pab log2 pab ,

wherepab is the joint probability of base pairab occurring
in the sequence, andpbua5pab /pa is the conditional prob-
ability.

To describe the nonadjacent correlation we generalizeD2
to

Dk1252H1(
a,b

pa~k!b log2 pa~k!b , k51,2,3,... , ~3!

wherepa(k)b means the joint probability of baseb occurring
after basea at a distancek along the sequence.D2 ,D3 ,...
describe the divergence from independence of the sequ
~the grammatical construction of genetic language!. It is eas-
ily shown thatDk11 is the mutual informationI (k) exactly
@4# since

I ~k!5(
i , j

pi ~k21! j log2

pi ~k21! j

pipj
522(

j
pj log2 pj

1(
i , j

pi ~k21! j log2 pi ~k21! j .

For a random sequence with infinite length,D15D2
5¯50. However, for a real sequence with finite length, t
fluctuation makes them nonvanishing. To draw out the me
ing of Dk calculated from the nucleotide sequence, o
should subtract the effect of stochastic fluctuation. The la
can be seen as the error bars forDk . Through expansion of
logarithm in Dk and by use of Pearson’s theorem one c
prove that, for a random sequence of lengthN, (2N ln 2)D1
obeys a x2 distribution with 3 degrees of freedom
TABLE II. The statistical distribution ofDk11 (k51,2,...) in complete sequences.

Pri Rod Mam Vrt Inv Pln Bct Vrl Phg Org

Correlation 18.9 19.8 14.8 15.8 8.7 4.5 7.2 11.8 6.2 5.9
strength
Main max. at 95.5 96.4 96.3 88.6 59.2 81.7 86.9 87.7 85.9 94.0
k51,2(%)
Short tail ~%! 7.5 14.2 11.2 16.2 1.6 21.5 6.1 14.7 11.0 22.0
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(2N ln 2)Dk.1 obeys ax2 distribution with 9 degrees o
freedom asN→`. Thus, the fluctuation bounds~f.b.! for
random sequences

D1~ f.b.!58.15/N,

Dk.1~ f.b.!515.65/N ~4!

~99% confidence level!. ~The second equation also holds f
independent sequence.! This means that for a random s
quence with a length of 1000 only 1% ofDk’s, namely,
about 10 of them, may exceed the bound. Since most D
sequences analyzed by us have length 1000 to 4000, to g
antee information carrying to eachDk higher than some de
fined bound we shall multiply a factor 1.5 to th
Dk.1(f.b.)(15.65/N), which will be defined as the actua
fluctuation bound.

Based on the above results we can discuss thek depen-
dence ofDk and split off the fluctuation effect due to finit
length. The results calculated from 3709 coding sequen
and 2883 complete sequences~each complete sequence i
cluding coding regions and introns, 58-caps and 38-tails!
from 1991 GenBank are shown in Tables I and II. The fi
lines in both tables refer to the category average of corr
tion strength of main maximum inDk11 @in unit of
Dk11(f.b.)#. The second lines give the percentage of
quences with main maximum located on the neare
neighboring (k51) and next-to-nearest neighboring (k52)
sites. We find that for most sequences~50% to more than

FIG. 1. Dk11 vs k (k51,2,3,...) for a typical DNA sequence
HUMDYZ1 (length53564), showing short-range dominance
nucleotide correlations. The straight line indicates 1.5Dk.1 ~f.b.!,
see Eq.~4!. To save space, onlyk,100 are plotted. Fork.100
Dk’s are always below the bound.
A
ar-

es

t
a-

-
t-

90%! the main maxima are located onk51 and 2 neighbors.
So, the nucleotide correlations in the nearest-neighbo
and next-to-nearest neighboring sites are dominant ones@1#.
The third lines give the percentage of sequences with a sh
tail base correlation. The short tail meansDk11
,1.5Dk11(f.b.) as k>3. From the tables we see that th
sequences with short-tail correlations amount to 25–50%
coding regions but only 5–20% for complete sequences. F
ure 1 gives a typical example ofDk11 versusk for sequence
HUMDYZ1 ~GenBank sequence identification codes!. The
above results prove the short-range dominance of base
relations in coding sequences. For complete sequences
short-range dominance of correlations exists, too, but m
parts of them have long tails.

Since the nucleic acid sequence, as a whole, plays its
in biological activity, it is generally anticipated that the s
quence will show long-range correlations. However, we ha
found short-range dominance of base correlations in cod
and many complete sequences, which is unexpected. Pa
the above results was obtained by us in Ref.@3#. The univer-
sal existence of strong nucleotide correlation in adjacent s
of DNA sequence is an important characteristic of gene
language. The feature is more notable for coding sequen
since the correlation with a short tail occurs more frequen
in these regions. Therefore, in spite of many long-range

FIG. 2. Dk11 vs k (k51,2,3,...) for English language. The En
glish passages~about 30 000 letters! are taken from technical refer
ence of Windows 95. It shows clearly the short-range dominanc
letter correlation. The curve decreases rapidly to a value near
average of an independent sequence. To save space, onlyk,100
are plotted. Fork.100 Dk’s always fluctuate around the averag
value.
.8

1.9

.5
TABLE III. The statistical distribution ofFT(k)A in coding sequences.

Pri Rod Mam Vrt Inv Pln Bct Vrl Phg Org

Correlation 17.5 6.6 7.0 7.8 6.9 5.9 2.9 4.8 2.2 1
strength
Main max. at 82.0 87.4 81.8 86.1 79.4 85.1 41.8 50.0 29.9 1
k51,2(%)
Short tail ~%! 13.7 18.4 9.1 20.4 10.9 13.2 21.4 26.5 30.6 34
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TABLE IV. The statistical distribution ofFT(k)A in complete sequences.

Pri Rod Mam Vrt Inv Pln Bct Vrl Phg Org

Correlation 12.3 10.9 12.0 11.8 9.6 7.3 6.4 8.3 5.8 3
strength
Main max. at 97.0 97.5 96.3 94.3 84.5 92.9 78.1 71.9 67.2 3
k51,2(%)
Short tail ~%! 1.0 2.3 2.8 1.0 2.8 5.1 2.3 2.1 3.2 8.
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teractions between nucleotides, there exists a definite
plicity against the complex background—the strong sho
range correlation of adjacent bases.

How can we understand the short-range dominance
base correlation in DNA sequences? It is related to so
frequently occurring words with 2–3 bases in genetic la
guage. We have found these words through preferen
mode analysis@24#. To understand this point we compa
genetic language with the English language. In English th
also exist many frequently used words and syllables. We
also calculateDk versusk and investigate the correlation o
letters. Figure 2 gives an example ofDk versusk in English,
which shows the short-range dominance clearly.

The informational redundancyDk11 can be rewritten as

Dk11'
1

ln 2 (
a,b

Fa~k!b

papb
, ~5!

where

Fa~k!b5~pa~k21!b2papb!2 ~6!

is defined to describe the particular base correlationk
51,2,3,...,pa(0)b5pab). It can be proved that, for an inde
pendent sequence,

NFa~k!b

pa~12pa!pb~12pb!

obeys ax2 distribution with 1 degree of freedom. So, on
has

Fa~k!b~ f.b.!5
6.63

N
pa~12pa!pb~12pb! ~7!

~99% confidence level!.
There are 16 kinds of base correlations included inDk .

We have studied each base correlation for 3709 coding
-
t-
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quences and 2883 complete sequences and found tha
modes CG and TA are the strongest for most sequences
an example, Tables III and IV give the statistical distributi
of FT(k)A versusk. We find that for these main modes o
base correlation the short-range dominance still holds,
the percentage of sequences with short tails is largely l
ered as compared withDk . The reason in part lies in that th
overall factor 1.5 has been used in the fluctuation bou
Actually, due to different degrees of freedom forDk.1 and
Fa(k)b a factor larger than 2 should be multiplied in th
Fa(k)b case.

From previous discussion we know that the difference
correlation Dk between coding and noncoding sequenc
does exist. The former has more short-tail correlations t
the latter. But both the coding and complete sequences s
strong correlations between adjacent bases. A large pa
the long tails of base correlation in complete sequen
comes from noncoding regions, but it seems not mainly fr
introns. The statistical data on base correlation in 924 int
sequences are given in Table V.

Spectral Analysis and long-range correlation.Spectral
analysis of a nucleotide sequence after it has been cha
into a numeric sequence, or more directly, of a correlat
functionDk may give more information on nucleotide corr
lation. An important feature is the many peaks in the sp
trum. Especially for coding sequence there is a univer
resonance peak atk/N51/3 ~N5sequence length!. Evi-
dently, the phenomenon is related to codon triplets in
sequence. Reference@15# gave a thorough analysis of its or
gin and demonstrated that the 1/3 peak occurs in the s
trum if and only if the base composition is not uniform
distributed in three codon positions. The theorem can be g
eralized to explain other kinds of peaks in the spectrum.
a spectrum line means the inhomogeneous distribution
base composition in a given range. It is reasonable to in
that the abundant spectrum lines existed in the hi
frequency range are related to short-range dominance of
correlations.
2.2

42.1

56.2
TABLE V. The statistical distribution of correlations in introns.

Dk FC(k)G FT(k)A

Pri Rod Mam Vrt Pri Rod Mam Vrt Pri Rod Mam Vrt

Correlation 6.0 6.0 4.8 3.4 11.7 9.5 8.0 5.1 3.0 2.3 2.6
strength
Main max. 98.2 95.1 95.2 88.4 96.3 97.4 93.5 82.7 56.1 43.8 59.7
at k51,2
~%!

Short tail 66.3 58.4 59.7 78.5 36.5 39.2 29.0 52.1 38.3 44.1 30.6
~%!
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We have pointed out the short-range dominance of b
correlation and its universal property. But what about
long-range component of the correlation? Is there any pe
liarity about long-range correlation in DNA sequences? T
problem can be approached through investigating the
frequency behavior of the power spectrum of sequences.
plying a FFT ~fast Fourier analysis! method to each se
quence, many long-period components in the spectrum
base correlation can be found. We calculate the percentag
sequences that have marked components of correlation
a long period larger than 100 in the spectrum ofDk and the
average spectrum of^Fa(k)b&ab . The data include 3720 cod
ing sequences and 2895 complete sequences. The r
shows that only 1%~or less! of coding sequences and 5%~or
less! of complete sequences have such long-period corr
tions.

We define the power spectrum as

Pn5U(
k51

N

Dk11 exp
2p ikn

N U2

. ~8!

We then investigate the relation between power spectrumPn

and frequencyn ~or inverse period! for each sequence an
check if the power spectrum can be put in the form

Pn5cn2a ~9!

for low n. By linear regression of lnPn versus lnn (ln Pn

52a ln n 1b) we find for sequences with long-period co
relations (period.100) that the low frequency behavior ca
be classified into three categories:~1! For 60% or more of
the sequences the linear relation holds~andaÞ0! in the low
frequency region with deviations,1„s5@(1

n$ ln Pn2
(2a ln n 1b)%2]1/2/n… @see Fig. 3~a!#; ~2! The linear relation
holds only approximately with 1,s,2 @see Fig. 3~b!#; ~3!
No linear relation but strong oscillation can be found b
tween lnPn and lnn @see Fig. 3~c!#. The average spectrum
exponentsa for various species are shown in Table VI. F
most ~about 60%! sequences with long-period correlatio
they take values between21 and22. However, it is dem-
onstrated that if the sequences are stochastically chosen
these exponents take values near20.5. Many works pro-
posed the power spectrum ofn2a type but their results are
scattered due to different samplings and statistical meth
@6,8,12#. They all neglected the difference between s
quences with and without long-period correlations. We e
phasize the large inhomogeneity in spectrum exponents f
sequence to sequence. Only for a part of the sequences
have long-period components in base correlation the low
quency behavior of the power spectrum takes the form
1/na with a51 – 2.

III. EVOLUTIONARY DEPENDENCE OF SHORT-RANGE
CORRELATION IN CODING SEQUENCES

Dobzhansky said that everything in biology will be no
sense if it is not viewed from evolution. In this section w
will study the statistical correlation between nucleotid
from the point of evolution. We shall demonstrate the ad
cent base correlation increasing with evolution. This is
very reason why base correlation is important in biology.
se
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w
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en
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-
m
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-
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Since adjacent base correlation is the main part of co
lations between nucleotides, the correlation property in c
ing sequences can be described throughD2 approximately.
D2 describes the grammatical construction of genetic l

FIG. 3. Log-log diagram for power spectrumP(n) vs frequency
n. ~a! for sequence HUMDYZ1 (length53564), showing a good
linear relation; ~b! for sequence HUMPDGFA (length
52305), showing an approximate linear relation; and~c! for se-
quence HUMLPLR (length51428), showing no linear relation
existed.

TABLE VI. The averaged spectrum exponenta in sequences
with long-periodicity-correlation for given deviations.

Pri Rod Mam Vrt Inv Pln Bct Vrl

0,s,1 1.29 1.16 1.51 1.25 1.24 1.32 1.40 1.1
1,s,2 0.93 1.60 1.27 1.63 1.21 1.31 1.16 0.8
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TABLE VII. The informational parameters of coding sequences.

Pri Rod Mam Vrt Inv Pln Bct Vrl Phg Org

^D1& 0.029 0.016 0.031 0.024 0.047 0.033 0.037 0.036 0.040 0.
^D2& 0.059 0.059 0.055 0.056 0.037 0.030 0.032 0.037 0.021 0.
^X& 0.71 0.80 0.68 0.73 0.54 0.52 0.56 0.56 0.45 0.3
^F& 0.54 0.53 0.56 0.51 0.48 0.46 0.52 0.46 0.43 0.4
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guage, whileD1 describes its vocabulary composition. An
one can defineX5D2 /(D11D2), which describes both as
pects. On the other hand, theG1C content~denoted byF! is
also introduced to describe the variation of strong-bond co
ponents of DNA sequence in the course of evolution. W
calculate the informational parametersD1 , D2 , X, andF for
each sequence, average them in each category of specie
then study their evolutionary dependence. The first study
done based on 1985 GenBank data with some complem
where 732 coding sequences and 0.8 million base pairs h
been statistically analyzed@1#. Next, we used 1987 GenBan
data and studied 1944 coding sequences with 2.5 mil
base pairs. Recently, we utilized 1991 GenBank data
their catalog on 8226 coding sequences with 15 million b
pairs. The results of three statistical investigations are c
sistent with each other. The results recently obtained
listed in Table VII. From Table VII we see that^D1& is a
small quantity,;0.03, which decreases roughly with evol
tion but the trend is not clear;^D2& increases gradually from
lower organisms to higher species, which shows the b
correlation strengthened in the course of evolution. The m
trends of^X& and^F& changing with evolution are the sam
as^D2&. Of course, the formation and bifurcation of spec
in evolution is a complicated process. The informational
rameters change with time. However, as soon as a new
cies has formed, its phenotype and gene structure begin
stabilized~the punctuated evolution as stated by some bio
gists!. So, the result obtained by use of the present data
reflect the evolutionary history. On the other hand, ‘‘evo
tion is a mender’’ as said by Monod. The complexity
evolution and the individual difference in biology mak
many exceptions to any general law. The correlation of
formational parameters with evolution could only be ma
fested through a coarse-grained average. The experien
our statistical investigation shows that the coarse-grained
erage is not an expedient measure but an appropriate for
express the biological complexity.

In order to show the difference in three positions of
codon we break the data of coding regions into three c
stituent subsequences. We define informational parame
of subsequences. For example,

D1
~n!521(

a
pa

~n! log2 pa
~n! . ~10!

D2
~n!52(

a
pa

~n! log2 pa
~n!2(

a
pa

~n21! log2 pa
~n21!

1(
ab

pab
~n21,n! log2 pab

~n21,n! ~11!
-
e

and
as
nt
ve

n
d
e

n-
re

se
in

-
e-
be
-

an
-

-
-

in
v-
to

-
rs

~n51, 2, and 3; the case ofn2150 means the third subse
quence!, in which pa

(n) denotes the probability of basea in
the nth subsequence, etc. In 1990 we made the subsequ
analysis on 1024 coding sequences with length 1200 b
pairs @17#. Recently, a similar analysis was made for e
larged data—8226 coding sequences with length.1000.
Both analyses give the same result. The results are tabu
in Table VIII. Combining Tables VII and VIII we find that
^D2& and ^D2

(1)& for the four higher species—Pri~primate!,
Rod ~rodent!, Mam ~other mammalian!, and Vrt ~other
vertebrate!—are higher than Inv~invertebrate! and Vrl ~vi-
ral!, the parameters of Inv and Vrl are higher than Pln~plant!
and Bct ~bacterial!, and the latter are, in turn, higher tha
Phg ~phage! and Org~organelle!. ^D2

(1)& changes in a wider
range than̂ D2&. However, there is no evolutionary correla

TABLE VIII. The informational parameters of subsequences

n ^D1
(n)& ^D2

(n)& ^X(n)& ^F (n)&

Pri 1 0.066 0.098 0.62 0.57
2 0.051 0.065 0.59 0.44
3 0.135 0.083 0.49 0.62

Rod 1 0.055 0.102 0.67 0.55
2 0.049 0.060 0.57 0.42
3 0.091 0.087 0.57 0.61

Mam 1 0.071 0.086 0.60 0.57
2 0.060 0.063 0.54 0.42
3 0.20 0.076 0.42 0.68

Vrt 1 0.074 0.091 0.58 0.55
2 0.064 0.073 0.55 0.42
3 0.110 0.087 0.60 0.57

Inv 1 0.089 0.050 0.39 0.53
2 0.084 0.089 0.54 0.41
3 0.186 0.091 0.40 0.51

Pln 1 0.080 0.038 0.34 0.51
2 0.070 0.077 0.55 0.40
3 0.125 0.076 0.44 0.48

Bct 1 0.097 0.035 0.28 0.58
2 0.052 0.067 0.59 0.41
3 0.164 0.094 0.48 0.56

Vrl 1 0.064 0.054 0.47 0.50
2 0.040 0.057 0.60 0.43
3 0.092 0.055 0.52 0.46

Phg 1 0.075 0.030 0.31 0.52
2 0.064 0.068 0.55 0.39
3 0.140 0.055 0.35 0.39

Org 1 0.078 0.032 0.37 0.48
2 0.077 0.082 0.60 0.40
3 0.199 0.073 0.30 0.31
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TABLE IX. The informationalD1 of noncoding sequences as compared with coding regions.

Imunoglob Mammal Eukaryot E. coli Prokar Virus

58-cap 0.037 0.033 0.111 0.036 0.094 0.089
38-tail 0.034 0.058 0.106 0.023 0.056 0.058
Intron 0.061 0.064 0.124
Coding 0.027 0.026 0.037 0.017 0.045 0.026
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(2)& and ^D2

(3)&. This shows that the neighborin
base correlation between two codons has the strongest
lutionary dependence. For parameter^X&, Pri, Rod, Mam,
Vrt take higher values than Inv, Pln, Bct, Vrl, and the lat
higher than Phg and Org. The same is true for^X(1)&. Next,
we find that these parameters for viruses take larger va
which are near their hosts—invertebrates. This supports
view that viruses could not be primitive life but retrogra
type in evolution. Organelles include mitochondria and ch
roplasts. They occupy a very low level, which supports
symbiosis theory about the origin of these organelles. A
other interesting result obtained by subsequence analys
D1

(3) much larger thanD1
(1) andD1

(2) , and varying from one
species to another@17#.

The base composition and base correlation are inhom
neous for different segments of DNA sequence. The ab
discussion is done for protein-coding regions. We have s
ied the noncoding sequences too and found their infor
tional parameters largely different from the coding regio
An important law is the following:D1 in all noncoding re-
gions are larger than the corresponding coding region~see
Table IX, which is taken from Ref.@1#!. The reason may be
due to the regulating and controlling signals existing in8-
caps, 38-tails, introns, and other noncoding regions, whi
decreases their informational entropies@1#. The result is also
consistent with linguistic analysis in Ref.@27#.

The evolutionary dependence of information parame
exists not only in the statistical average of a large amoun
unrelated genes, but also in some particular gene or prote
the latter has enough sequence data and occurs in a
range of species. We have studied 37 MHC~myosin heavy
chain! genes and the results for coding and complete
quences are shown in Table X. The results are consis
with Ref. @28#, which uses the DNA walk method but th

TABLE X. The informational parameters of MHC genes.

^D1& ^D2& ^X& ^F&

Pri coding 0.051 0.086 0.64 0.55
complete 0.028 0.089 0.78 0.53

Rod coding 0.048 0.077 0.65 0.56
compete 0.031 0.067 0.75 0.54

Mam coding 0.065 0.088 0.58 0.58
complete 0.061 0.085 0.59 0.57

Vrt coding 0.034 0.081 0.73 0.48
complete 0.029 0.069 0.74 0.46

Inv coding 0.049 0.053 0.58 0.49
complete 0.047 0.036 0.50 0.44

Pln coding 0.076 0.042 0.34 0.36
complete 0.080 0.040 0.32 0.36
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evolutionary dependence is more obvious in our informati
theoretic approach.

The most direct and obvious representation of the evo
tionary relationship is preferential mode analysis done
cently by us@24#. The nucleic acid sequence is reduced to
two-letter sequence written asS ~5C or G! andW ~5A or
T! or by R ~5A or G! and Y ~5C or T!. The preferential
modes of dinucleotides and trinucleotides are emphas
since the nearest-neighboring and next-to-nearest neigh
ing correlation of bases are the most important ones.
define the ordered fragment (Yl ,...,Yk)n , YiP(S,W) or
(R,Y) and n—repetition times of (Yl ,...,Yk). From se-
quence data the frequency of modem5(Yl ,...,Yk), denoted
as Nm , is calculated first. We then define and calculate
relative mode content~RMC!

Wm5
Nm2^Nm&

sm
. ~12!

^Nm& is the expectation value of mode frequency in the
dependent sequence andsm its deviation. Likewise, one can
calculate the relative ordered-fragment content~ROFC!
through the numeration of the ordered fragme
(Yl , . . . ,Yk)n (n52,3, . . . )

Wmn5
Nmn2^Nmn&

smn
. ~13!

Wm(Wmn).1 means preferred mode,Wm(Wmn),1 means
poor mode. Further, to describe the deviation of seque
from independent sequence one may sum up the mode
given k and reading framei ( i 51,2, . . . ,k). Define devia-
tion

Uki522k(
m

~Wm!2. ~14!

It can be shown thatUki is related to informational redun
dancy D2 ~as k52!, D3 ~as k53!, etc. but with a given
reading frame.

We have studied 6.83106 bp sequence data and found a
preferred~and poor! modes ofk52 and 3. Several example
for exons are shown in Table XI. The RMC and ROFC~with
number in brackets showing the repetition times of mo!
are tabulated. The data indicate clearly the evolutionary
pendence of these modes. The deviationsU3i(S-W),
U2i(S-W), and U2i(R-Y) for exons and U2i(R-Y),
U3i(R-Y) for introns, 58-caps, and 38-tails are correlated
with evolution, too, which can be found in Ref.@24#.
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TABLE XI. Relative ordered-fragment contentWm andWmm of preferred modes.

Pri Rod Mam Vrt Inv Pln Bct Vrl Phg Org

Exon
SWS 4.41 4.69 5.57 4.20 1.96 0.82 2.28 1.67 0.4721.86
SWS~2! 2.23 2.54 2.65 2.36 1.33 0.64 1.19 0.79 0.61 20.48
SWS~3! 2.32 2.11 3.20 2.23 1.42 0.64 1.10 0.96 0.58 20.12
SWS~4! 2.39 1.94 2.52 1.92 1.50 0.76 0.61 0.70 0.09 0.
WWS 1.85 2.20 3.02 2.73 1.52 1.85 0.81 0.18 20.12 21.42
WWS~2! 1.29 1.47 2.02 1.82 0.89 1.18 0.39 0.33 20.12 20.47
WWS~3! 1.10 1.28 1.85 1.71 1.07 1.08 0.38 0.39 20.05 20.28
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Through the above analyses we have found many
ferred modes inS-W language for exons and many preferr
modes inR-Y language for introns, 58-caps and 38-tails @24#.
It seems that exons preferentially useS-W language and
these noncoding regions preferentially useR-Y language.
The different preference of genetic languages in coding
noncoding sequences can be explained by their functio
difference. TheS-W representation is more convenient f
the coding region in its translation and proofreading sin
two strands of DNA are precisely the same inS-W language.
The R-Y reprsentation is more useful for noncoding regio
in the regulation and control of gene expression since
sites of large local deviation in DNA~which are recognized
by repressors and enzymes! are presumably determined b
an R-Y rather than anS-W sequence.

The evolutionary dependence of short-range correlatio
coding sequences can be shown not only in informatio
parametersD2 , etc. and preferential mode analysis, but a
in other statistical properties of the sequence. For exam
the eigenvalue and limit-approaching length of the proba
ity matrix @17#, the fractal dimension of the 2D DNA walk
@5#, etc. On the other hand, since the short-range correlat
of nucleotides are correlated with evolution, we can rec
struct an evolutionary relation with this knowledge. Based
base probabilitiespa and conditional probabilitiespbua and
pbua* ~* means any base! we have succeeded in deducing t
evolutionary tree by classifying 16S rRNA sequence d
@29#.

Evolutionary mechanism.Nucleic acid sequences evolv
under two factors, namely, random mutations~including in-
sertions, deletions, and recombinations!, which cause the en
tropy H to increase, and natural selection, which cause
Markovian entropy to decrease~the increase of base correla
tion!. The latter can be viewed as some constraints impo
on the random drift of bases. By using the maximum entro
principle ~MIP!—a general principle for the nonequilibrium
system suggested by Haken@33#—we can express the evo
lutionary mechanism of joint action of random mutation a
natural selection successfully@25#. Following MIP, the en-
tropy H is maximized under constraints

N5Spa51

and fixedHM

HM5(
a

pa log2 pa2(
ab

pab log2 pab
e-
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al

e
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52(
ab

pbpaub log2 paub ~15!

andHM*

HM* 5(
a

pa log2 pa2(
ab

pa~1!b log2 pa~1!b

52(
ab

pbpaub* log2 paub* ~16!

or C1G contentC

C5pC1pG , ~17!

namely,

dH2l0dN2l1dHM2l2dHM* 50 ~18!

or

dH2l0dN2l1dHM2l2dC50. ~19!

From Eqs.~18! and ~19! the probabilitiespa for each se-
quence can be found. Through calculation ofpa for 1469
protein-coding DNA sequences of various species we fi
the deviations of the theoretical probabilities from the e
perimental values are generally lower than 10%. Moreov
the Lagrangian multipliers averaged over each category
correlated with evolution. The agreement of MIP analy
with observational data is satisfactory. So the above assu
evolutionary mechanism of nucleotide sequences is rea
able and their formation can be explained under the M
principle basically in spite of the complexity inherent in th
evolutionary process.

IV. DNA WALK

So far we have discussed the main results obtained b
on base correlations in DNA sequences—the finding
short-range dominance of the correlation and its evolution
dependence. In these discussions different methods h
been synthetically used but the main approach is based
information-theoretic consideration. Recently, 1D DNA wa
as a method to investigate nucleotide correlation appea
widely in physical literatures@7,8,11,28#. However, follow-
ing Silverman and Linsker, each symbol ins-symbol se-
quence can be represented by a vertex in the (s21) simplex.
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TABLE XII. The averaged fractal dimensions in 3D, 2D, and 1D DNA walk~primate!.

Code Intron Cap Tail Complete Code Intron Cap Tail Compl

Da 1.69 1.56 1.47 1.53 1.56 Da 1.80 1.60 1.53 1.65 1.67
3D Db 1.38 1.40 1.26 1.33 1.33 1DDb 1.59 1.57 1.48 1.49 1.67

D f 1.38 1.38 1.31 1.37 1.38 (R-Y) D f 1.50 1.52 1.48 1.50 1.58
Da 1.65 1.51 1.41 1.47 1.50 Da 1.51 1.48 1.41 1.41 1.40

2D Db 1.35 1.39 1.22 1.30 1.37 1DDb 1.27 1.28 1.14 1.26 1.22
D f 1.36 1.38 1.26 1.34 1.36 (S-W) D f 1.29 1.30 1.17 1.30 1.30
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So, for the nucleotide sequence the mapping space is t
dimensional@6,10,30#. The 3D DNA walk is the most com
plete one that considers four bases equivalently in b
space. In the following we shall generalize DNA walk in
three-dimensional space. By usingS-L mapping, putA, C,
G, andT on the four vertices of a tetrahedron. We use
following representation of nucleotides in whichA corre-
sponds to a walk in the direction (i1 j1k), C corresponds to
(2 i1 j2k), G corresponds to (i2 j2k), andT corresponds
to (2 i2 j1k), respectively. So the projection of DNA wal
on theX axis is purine along1X and pyrimidine along the
2X direction; the projection of the DNA walk on theZ axis
is A and T ~weak bond! along 1Z and C and G ~strong
bond! along the2Z direction; the projection of DNA walk
on theY axis isA andC along1Y, andG andT along the
2Y direction. The mean square separation of the end po
in a sequence~length N! containingn bases is denoted b
^Rn

2&N . The local fractal dimension~FD! is defined by@5#

dN~n!5 ln
n11

n Y ln$^Rn11
2 &N / ln^Rn

2&N%1/2. ~20!

We found thatdN(n) changes smoothly only forn<N/2 as
in polymer chains in configuration space@31#. So an aver-
aged FD is defined, namely,

D f5^dN~n!&N/2 . ~21!

Here the average is taken over differentn(n<N/2). More-
over, from the log-log diagram of end-point separation v
sus base pair number in 3D DNA walk we found a go
linearity remaining between ln^Rn

2&N
1/2 and lnn in a range of

20 bases and a comparatively good linearity in 400 ba
So, we can define two other quantities,

Da5^dN~n!&a ~22!

and

Db5^dN~n!&b , ~23!

where^¯&a means the average over first 21 bases~n from 1
to 21, or lnn from 0 to 3! and^¯&b means the average from
22nd to 403rd bases~ln n from 3 to 6!. The above analyse
show that the FD can be defined rigorously only in regions
20 bases but it can be generalized to about 400 bases o
the length of the sequence approximately@5,9#.

In 3D walk it is easily shown that the square separation
end pointsRn

2 obeys

3Rn
254~nA

21nG
2 1nc

21nT
2!2n2,

~24!
ee

se

e

ts

-
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f

n5nA1nG1nc1nT .

So, fornA;nG;nc;nT , we have

3Rn
254n2(

a
~pa

22 1
4 !'n2 ln 2 D1~n!,

~pa5na /n, a5A,G,C,T!,

^Rn
2&'

ln 2

3
n2^D1~n!&, ~25!

whereD1(n) means the first-order information redundan
for a window with lengthn. The average in Eq.~25! is taken
overn-bases fragments along the sequence. Since the de
dence of̂ D1(n)& on n is not in a form of power function for
a large variation ofn, the linear relation between ln^Rn

2&N and
ln n holds only in regiona, i.e., forn small as stated before
Set ^D1(n)&;n2b for small n. For a random sequence,b
51. If a sequence has a strong bias of bases, then the ch
of D1(n) with n will be weaker than that in random se
quence. This leads tob,1 and a relatively smallDa @Da
;2/(22b)#. On the other hand, whenn.N/2, the window
with n bases can be shifted along the sequence only for a
times and one has a large fluctuation about the average^Rn

2&.
This makes the fractal description through end-point sep
tion impossible. Equations~20!–~25! give a relation between
fractal description and information-theoretic description.

We calculate fractal dimensionsDa , Db , andD f in 3D
DNA walk, 1D purine-pyrimidine walk, 1D strong-wea
bond walk and 2D walk for each sequence. The 2D DN
walk is defined by map of the sequence onto 2D plane
which A, C, T and G correspond to1X, 2X, 1Y, and
2Y, respectively. More than 1000 sequences are calcul
and a part of results~for primate only! are listed in Table
XII. ~The details of the results can be found in Ref.@34#.!

From Table XII we find the following.
~1! Da.Db;D f . SinceDa is the rigorous fractal dimen

sion defined in a range of 20 bases, the result shows
long-range~larger than 20 bases! correlation lowering the
average FD. The point can also be seen from a plot
ln^Rn

2&N versus lnn in which the curve goes slightly up from
a straight line forn larger than 20.

~2! The FD in the 3D walk is slightly larger than that i
2D and they are both smaller than the 1D purine-pyrimid
(R-Y) walk and larger than the 1D weak-strong bond (S-W)
walk. The 3D walk includes three kinds of 1D walks as
projections. The purine-pyrimidine (R-Y) classification of
nucleotides is related to the hydrophobic-hydrophilic char
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teristics of encoded amino acids. The classification of w
and strong hydrogen bonds is also important for the biolo
cal function of nucleic acids. These two walks are more i
portant than the third one. The 2D walk defined above ha
projections in the direction ofi1 j and i2 j corresponding to
S-W walk andR-Y walk, respectively. So the fractal dimen
sion in the 2D walk is approximately equal to that in 3
However, the two 1D walks—R-Y type andS-W type—take
much different values of fractal dimensions. The former
larger than the latter and the fractal dimensions of 3D and
walks lie in the middle of them. The 1DS-W walk taking a
smaller FD than theR-Y walk can be explained by calcula
tion of D1 in reduced languages. We have proved thatD1 in
S-W language is larger thanD1 in R-Y language.

~3! D f of coding sequences takes value between 1.1
1.4 for 2D and 3D walks and between 1.2 and 1.5 for
R-Y walks. The deviation of these dimensions from 2 sho
the existence of base correlation even in coding region.
result is different from Ref.@7#, wherea50.50 is reported
for some cDNA sequences which corresponds to ourD f
52.

~4! Da of coding sequences is found to be larger thanDa
of corresponding introns, 58-caps and 38-tails. This implies
possibly that some regulation signals~biased in base compo
sition! with length smaller than 20 bases occurred in th
noncoding regions@1,27#.

The above results are consistent with that obtain
through the information-theoretic method. However, t
fractal dimension and the end-point separation in the D
walk are determined by first-order informational redundan
D1(n) versusn. Its relation to base correlation is not clea
So, the property of short-range dominance of base corr
tion which has been found in the information-theore
method could not be demonstrated obviously in this
proach.

V. CONCLUSION: THE STATISTICAL
CHARACTERISTICS OF GENETIC LANGUAGE

The formal language theory has been developing c
spicuously since the classic work of Chomsky@35#. How-
ever, it is not clear if the genetic language can be put in
framework of Chomsky hierarchy. To establish a reasona
mathematical model on genetic language one should
study the statistical characteristics of the language, espec
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from the point of evolution. The following points should b
noticed seriously@32#.

~1! Strong noise background and small informational
dundancy of DNA sequences due to the pressure of neu
or nearly neutral mutations of bases in the evolution.

~2! Short-range dominance of base correlations and
evolutionary relationship. The short-range dominance
nearly universal for all sequences. The evolutionary dep
dence exists only for coding sequences and in the coa
grain average. These points have been indicated and
cussed thoroughly in Secs. II and III in this article.

~3! Division of the language into two kinds—coding re
gion and noncoding region—and the existence of the read
frame ~inhomogeneity of base composition! in coding se-
quences.

~4! Different vocabularies in coding and noncoding s
quences. The coding sequences preferentially useS-W lan-
guage and many noncoding sequences preferentially useR-Y
language. The particular vocabularies in some noncoding
gion lead to its relatively largeD1 ~see Sec. III!.

~5! Inhomogeneity of long-range correlation propert
Several percents of sequences in single-copied genes s
the long-period of base correlation which obeyy2a law with
a5122. The law seems related to fragment repetitions@6#
~see Sec. II!.

~6! G1C content. In addition to adjacent base correlati
the most strong evolutionary relationship in base compo
tion is G1C content, which provides a constraint to rando
mutation~see Table VI!.

~7! Maximum information principle that describes th
evolutionary mechanism basically. The evolution of nuc
otide sequences is dominated by two major factors—rand
mutation that maximizes the entropy and the natural se
tion which strengthens the statistical correlation betwe
bases, especially the correlation between neighboring ba
The MIP, as a formulation of molecular evolution, can su
marize the above mechanism and it achieves success in
study of coding sequences~see Sec. III!.
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